If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1224=16t^2
We move all terms to the left:
1224-(16t^2)=0
a = -16; b = 0; c = +1224;
Δ = b2-4ac
Δ = 02-4·(-16)·1224
Δ = 78336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{78336}=\sqrt{2304*34}=\sqrt{2304}*\sqrt{34}=48\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{34}}{2*-16}=\frac{0-48\sqrt{34}}{-32} =-\frac{48\sqrt{34}}{-32} =-\frac{3\sqrt{34}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{34}}{2*-16}=\frac{0+48\sqrt{34}}{-32} =\frac{48\sqrt{34}}{-32} =\frac{3\sqrt{34}}{-2} $
| (2m+1)/6-(3m+1)/8=0 | | t-1)-54-t=3( | | 2a-8=4a-2a+(-4) | | -3y=1.35 | | -3(1-6v)=123 | | 15x+10+2x+23=180 | | 10=4c–6 | | 3x42x=21x+9 | | 1x2=2x+1 | | b/3+2=3 | | -m+23=-5(1+3m) | | -4+4x=-16+3x | | –3(5–t)=18 | | 3k–3=3 | | k/3+2=5 | | (3x-2)^2-(16x^2)=0 | | (5-x)4-2(x-3)=x-4-3(x+2 | | (3x-2)^2=16x^2 | | x1+2=0 | | (x-20)+1/3x+(x-10)+40=360 | | 16.2+4y=7y+9 | | -17(46a-29)=51) | | (5-x)×7=63 | | 6x-6/2=3x+6/4 | | /3y-7=5y+21 | | Q=30-3/4p | | 7x-6=4-3 | | 30-8z=2(z-5) | | -16a=83 | | 14=5/6f | | x2+2x=168 | | 27=11-4n |